Approximate algorithms for constrained circular cutting problems

نویسندگان

  • Mhand Hifi
  • Rym M'Hallah
چکیده

In this paper, we study the problem of cutting a rectangular plate R of dimensions (L;W ) into as many circular pieces as possible. The circular pieces are of n di4erent types with radii ri; i = 1; : : : ; n. We solve the constrained circular problem, where di the maximum demand for piece type i is speci+ed, using two heuristics: a constructive procedure-based heuristic and a genetic algorithm-based heuristic. Both of these approaches search for a good ordering of the pieces and use an adaptation of the best local position procedure (Studia. Inform. Univ. 2 (1) (2002) 33) to +nd the “best” layout of this ordered set. This positioning procedure is speci+cally tailored to circular cutting problems. It acts, for constrained problems, as one of the mutation operators of the genetic algorithm. We compare the performance of both proposed approaches to that of existing approximate and exact algorithms on several problem instances taken from the literature. The computational results show that the proposed approaches produce high-quality solutions within reasonable computational times. The genetic algorithm-based heuristic is easily parallelizable; one of its important features to be investigated in the near future.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach

We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...

متن کامل

Primal-dual path-following algorithms for circular programming

Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...

متن کامل

OPTIMAL CONSTRAINED DESIGN OF STEEL STRUCTURES BY DIFFERENTIAL EVOLUTIONARY ALGORITHMS

Structural optimization, when approached by conventional (gradient based) minimization algorithms presents several difficulties, mainly related to computational aspects for the huge number of nonlinear analyses required, that regard both Objective Functions (OFs) and Constraints. Moreover, from the early '80s to today's, Evolutionary Algorithms have been successfully developed and applied as a ...

متن کامل

Comparison of Stochastic and Approximation Algorithms for One-Dimensional Cutting Problems

The paper deals with the new algorithm development and comparison of three one-dimensional stock cutting algorithms regarding trim loss. Three possible types of problems used in this study are identified as easy, medium and hard. Approximate method is developed which enables a comparison of solutions of all three types of problems and of the other two stochastic methods. The other two algorithm...

متن کامل

A multi-objective resource-constrained optimization of time-cost trade-off problems in scheduling project

This paper presents a multi-objective resource-constrained project scheduling problem with positive and negative cash flows. The net present value (NPV) maximization and making span minimization are this study objectives. And since this problem is considered as complex optimization in NP-Hard context, we present a mathematical model for the given problem and solve three evolutionary algorithms;...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computers & OR

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2004